Oxidation reactions on neutral cobalt oxide clusters: experimental and theoretical studies.

نویسندگان

  • Yan Xie
  • Feng Dong
  • Scott Heinbuch
  • Jorge J Rocca
  • Elliot R Bernstein
چکیده

Reactions of neutral cobalt oxide clusters (Co(m)O(n), m = 3-9, n = 3-13) with CO, NO, C(2)H(2), and C(2)H(4) in a fast flow reactor are investigated by time of flight mass spectrometry employing 118 nm (10.5 eV) single photon ionization. Strong cluster size dependent behavior is observed for all the oxidation reactions; the Co(3)O(4) cluster has the highest reactivity for reactions with CO and NO. Cluster reactivity is also highly correlated with either one or more following factors: cluster size, Co(iii) concentration, the number of the cobalt atoms with high oxidation states, and the presence of an oxygen molecular moiety (an O-O bond) in the Co(m)O(n) clusters. The experimental cluster observations are in good agreement with condensed phase Co(3)O(4) behavior. Density functional theory calculations at the BPW91/TZVP level are carried out to explore the geometric and electronic structures of the Co(3)O(4) cluster, reaction intermediates, transition states, as well as reaction mechanisms. CO, NO, C(2)H(2), and C(2)H(4) are predicted to be adsorbed on the Co(ii) site, and react with one of the parallel bridge oxygen atoms between two Co(iii) atoms in the Co(3)O(4) cluster. Oxidation reactions with CO, NO, and C(2)H(2) on the Co(3)O(4) cluster are estimated as thermodynamically favorable and overall barrierless processes at room temperature. The oxidation reaction with C(2)H(4) is predicted to have a very small overall barrier (<0.23 eV). The oxygen bridge between two Co(iii) sites in the Co(3)O(4) cluster is responsible for the oxidation reactions with CO, NO, C(2)H(2), and C(2)H(4). Based on the gas phase experimental and theoretical cluster studies, a catalytic cycle for these oxidation reactions on a condensed phase cobalt oxide catalyst is proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and theoretical studies of ammonia generation: Reactions of H2 with neutral cobalt nitride clusters.

Ammonia generation through reaction of H(2) with neutral cobalt nitride clusters in a fast flow reactor is investigated both experimentally and theoretically. Single photon ionization at 193 nm is used to detect neutral cluster distributions through time-of-flight mass spectrometry. Co(m)N(n) clusters are generated through laser ablation of Co foil into N(2)/He expansion gas. Mass peaks Co(m)NH...

متن کامل

Reactions of sulfur dioxide with neutral vanadium oxide clusters in the gas phase. II. Experimental study employing single-photon ionization.

Single-photon ionization through vacuum ultraviolet (VUV, 10.5 eV) and soft X-ray (extreme ultraviolet, EUV, 26.5 eV) laser radiation is successfully employed for the study of the reactions of neutral vanadium oxide clusters (V(m)O(n)) with sulfur dioxide (SO2) in the gas phase. V(m)O(n) clusters are generated by reaction of a laser-generated vanadium plasma with O2 in a supersonic expansion. T...

متن کامل

Reactions of sulfur dioxide with neutral vanadium oxide clusters in the gas phase. I. Density functional theory study.

Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results i...

متن کامل

Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation.

Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4 (●) can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other...

متن کامل

Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2010